Influence of Cd(II) Ions on Photoprocess Efficiency in Photoemulsion Heterocontact AgHal Crystals

Eugene I.Kagakin, Elena V.Prosvirkina, Timothy A.Larichev, Fyodor V.Titov State University of Kemerovo, Kemerovo, Russia

Abstract

Photographic properties of AgBr T-crystals and AgBr T-crystals with AgBr(I) lateral shell, doped by Cd(II) ions are investigated. Phenomenological model of the mechanism of an impurity ions influence on properties of a heterocontact in system AgBr/AgBr(I) is offered.

Experimental Results and Discussion

The influence of Cd²⁺ ions on photoemulsion microcrystals' properties was repeatedly investigated. However the results of the different researchers are rather inconsistent. We investigate influence of Cd²⁺ ions and their localization on photographic properties of T-crystals AgBr with lateral AgBr(I) shells.

The emulsion microcrystals with the following dispersive characteristics: an average equivalent diameter d=2.2-2.4 micron, a variation coefficient C_v =50-55%, coefficient of crystallographic uniformity S_T =94-95% for experiments are used. The concentration of entered Cd^{2+} is 1×10^{-3} mol/mol AgHal in all cases.

Photoemulsion layers are exposed, developed in D-19 and the sensitometric characteristics are determined. The results of these experiments are submitted in the Table 1.

Table 1. The sensitometric characteristics of photoemulsion microcrystals.

No.	T-crystals	S _{rel.}	D _o	D _{max}	γ
1	AgBr	100	0.15	3.2	2.6
2	Ag(Cd)Br	120	0.12	3.3	2.8
3	AgBr/AgBr(I)	250	0.12	2.5	1.8
4	Ag(Cd)Br/AgBr(I)	200	0.12	2.5	2.0
5	AgBr/Ag(Cd)Br(I)	400	0.12	4.0	3.2

Emulsions 1-2 contain T-crystals AgBr, emulsions 3-5 contain T-crystals with lateral shells (core AgBr, shell AgBr_{0.96}I_{0.04}). Cadmium salts was entered to emulsion 4 and 5 during a core (4) and a shell (5) crystallization.

The results show, that the effect of Cd²⁺ introduction depends on structure, microcrystals composition and place of it's localization in a AgHal lattice. For example, the presence Cd²⁺ in AgBr T-crystals does not influence to photographic properties of emulsions.

It is known, that T-crystals with lateral shells (T-L-crystals) allow to receive photographic sensitivity in 2-3

times large, than T-crystals AgBr¹. Experiments with emulsions of such type (emulsions 3-5) have shown, that the heterocontact microcrystals AgBr/AgBr(I) are very sensitive to Cd²⁺ ions localization in a lattice. The best result was received at Cd²⁺ introduction in a zone of a heterocontact and in a phase AgBr(I). Introduction of Cd²⁺ ions in a core AgBr results in reduction of sensitivity. Such large distinction in efficiency of ions Cd²⁺ action can be explained by considering the band diagram for T-L-crystals AgBr/AgBr(I) (Figure 1).

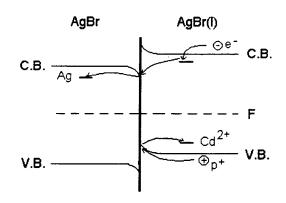


Figure 1. Band diagram for AgBr/AgBr(1) heterocontact.

In absence of Cd²⁺ ions generated in the phase AgBr(I) photoelectrons are transferred in a phase AgBr through a heterocontact. In a heterocontact zone an effective recombination of photoelectrons with photoholes is possible. Therefore the T-L-crystals sensitivity is limited by recombination processes. Presence of Cd²⁺ ions in a heterocontact zone or in a AgBr(I) phase results in formation of hole traps in these places. The presence of these traps reduces mobility of photoholes and efficiency of a recombination and increases efficiency of electrons transfer to AgBr (the latent image formations).

Thus the Cd²⁺ ions adjust processes of interaction between photoelectrons and photoholes. It is necessary to understand possible mechanisms of action of these ions on electron-hole processes for effective application of impurity ions.

References

 E.I.Kagakin, Yu.A.Breslav, A.I.Mokhov and T.A.Larichev, "Tabular Silver Halide Grains with Lateral Shells", J. Sci. and Applied Photogr. (Russia), 36: 353-359 (1991).